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ABSTRACT

Theoretical analyses are made for the linearized phugoid oscillations of
powered vehieles in steady level flight and for the nonlinear short period oscil-
lations of unpowered vehicles on ascending or descending flight paths. It is
found that the atmospheric density gradient will produce a large decrease in
the classical phugoid period and that this effect increases with velocity until
orbital speeds are approached.

The linearized short period oscillations are analyzed using both body axes
and axes tangent to the flight path: the resulting linearized equations with
time-dependent coefficients are shown to coincide only if the effect of accele-

ration is properly considered in the replacement of (', , by (', The nonlinear

mg-
oscillations are governed by a similar equation, except that now the coeffi-
cients are functions of the angle of attack and its derivative. A new expansion
procedure is introduced which enables the approximate analysis of this
nonlinear time-dependent equation to be made. It is found that the instan-
taneous frequency o and the dynamic stability factor A/A, which are
constant in the usual case of constant coefficient aerodynamics, hecome
functions both of time and the oscillation amplitude A.

SYMBOLS

(.1,8) = oscillation amplitude and argument [wds in angle of
attack oscillation

B = moment of inertia about y axis
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Cp,C,C,,,Cc,Cy = dimensionless acrodynamic coefficients: see Table 1
(C';, D;r) = dimensionless coefficients in expansion of nonlinear static
and damping characteristics in « and o
F = U/+/gR = ratio of flight speed to circular orbit velocity
g = acceleration of gravity, ft/sec?
L,S = reference length and area
m = vehicle mass, Ih/(ft/sec?)
q = pitching velocity
r = Ry + y = distance from earth’s center to vehicle, ft
R = altitude of vehicle above earth’s surface, ft
y = distance from earth’s surface to steady state orbit of
vehicle, ft; see Fig. 1
s = dimensionless distance traveled along trajectory; s =
[Vdt/L
V' = flight velocity, ft/sec
(2,w) = axial and normal velocity components of velocity in body
axes, ft/sec
X ,7Z = axes fixed in body
X’,Z" = axes fixed in space with origin at center of earth
u = horizontal component of flight velocity, ft/sec
a,y,0,¢ = (See Fig. 1)
p = air density, (mass/ft?)
g = mL*/B, u= pSL/2m, 3 = p'/p

EQUATIONS OF MOTION

Using the axes system that is always tangent to the actual flight path, Allen
(1957) presented the linearized equations of motion for a hypersonic nonrolling
missile having a longitudinal plane of symmetry and trimmed to follow a nearly
zero-lift trajectory. The equations used by Allen to predict the short-period
longitudinal oscillations during high rates of acceleration or deceleration may be
written as follows (e.g., see Sommer and Tobak, 1959):

mV = — L oV*8Cp — mgsiny + T cos a

a

s ! e o
mVy = 3 pV38CL — m (g—)(’osv + T sn«a

-
B (a+5—§) = }pVSLC,

. . ; 1" cos v
P=Vsiny; o=-—""— (1)
g
In these equations ('p, C';, (", are the nondimensional drag, lift, and moment
coefficients (see Table 1) and are, in general, nonlinear functions of «, «, and 6.
The other symbols and variables are illustrated in Fig. 1.
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The second set of equations with which we will be concerned is written in
terms of axes fixed in the vehicle so as to coincide with the principal body axes,

as (e.g., see Laitone, 1959):

m (i + wg) =T — 1 pV3SC, — mg sin 8

m (w — ug) L pVESCy + mg cos 8

By = 1 pV’SLC,,

. : - u
1123—6,9:-"—-6—‘;

V = \/J’-Fw, w= 1 sina = utan a (2)

The variables and symbols in these equations are illustrated in Fig. 1, and the
derivatives of the aerodynamic coefficients are presented in Table 1.

For the tangent axes system of Eq. (1), Allen (1957) gave the linearized
equation of motion for a hypersonic nonrolling reentry missile having a longi-
tudinal plane of symmetry and trimmed to follow a nearly zero-lift trajectory.
Allen also assumed constant aerodynamic stability derivatives, negligible
gravitational acceleration, and an exponential density variation with altitude.

'y

EARTHS SURFACE

ol |

Fig. 1.
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This equation which governs the linearized short period oscillations in angle of
attack of a reentry missile can be written in dimensionless form as follows:

a'(s) + ubDia'(s) + pCia(s) = 0

Dy =[C, — Cp — 0 (Cg + Cm)] (3)

i = [ — oy + BCwiCr) + (_',,.;’; - p('f,l;(',,]

where the independent variable s represents the number of body lengths traveled
along the trajectory and is related to time by the following relations:

5= ; [ Vir) dr;  u(s) = "’_(S_)Jﬂd«

2

dt L ds '’ di?

d( ) Vd( ) d ):(1')‘*(12( ) , VdVd( )

R e @)
L ds*® L* ds ds

The same analysis was done by Laitone (1959) using the body axes system of
Eq. (2). By making essentially the same assumptions as Allen, Laitone obtained
an equation in terms of the normal velocity w, rather than the angle of attack
in the following form:

w'’(s) + wDww'(s) + uwCow(s) =0

.2 y
D, = [1 oy VPl _ VaC ]

o v (2=, Y 3 3Cy w(pr('nq :
e = [ 7l (aw T dq 6w)+p ds @)

This equation can now he shown to be identical with that of Allen if the
correct values of (', and (', are introduced in place of a(',,/dw and aC,,/dw.
This is accomplished as follows:

w=al;w =aV 4+ aV;w' =a"V 4+ 2V + V" (6G)
and (noting that (',,,. etc. are dimensionless, whereas d(',,/dw, ete. are not)

dCatwi) = [0+ L2agi| = [ (o 4 aar)

6(,»1( dl + V da + a(ﬂ -|— 1 da)] = [(17@"’1 _+_ i.'é_(_..m)da
a=0=a dw dJw

,0Cm
+ (I a )da} l=ll=a=:;
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so that

v — (1( ','3 = .',,( :”j 0 -_di( "m
: e da 1 Jw I Jw
I' d(‘m & a 'm ,(] “m -.' s
('mc; e T "'" 73"' | "(" = (‘mu II/I? («,.,ic; (i)

L da L ow’ ow

The last set of equations shows that (', is no longer given directly by (', in
accelerated motion. This is a very important point since the theoretical calcu-
lations actually yield €', and (', directly, and in the past these have been
assumed to give (', and (', precisely.

By inverting Eq. (7) for (', and (', in terms of (',, and (',,. employing the
velocity equation which relates V' to €'p under the assumption of negligible
gravity (e, V'/V = —u('p), and expressing ('y in terms of (', and ('p (i.e.,
(ve = (a4 Op), it is easily shown that Laitone's equation, i.e., Eq. (5),
reduces to Eq. (3) or Allen’s result.

It is also of interest to inspect the explicit expression for the variation of the
pitching velocity ¢ during the short period longitudinal oscillations, which can
be obtained from Zq. (5), if we assume that (', is negligible so that

q"(s) + uDsq'(s) + uCaq(s) =0

’

I):! s [(r.\'a - U('rmq] - p
P

C; = 0{ - Umﬂ - .U-(?mu ("-VaI (8)

Fortunately. (',,, can be very small in hypersonic flow; consequently, this
expression for the pitching velocity is valid for this important case. A comparison
of Eqs. (9) and (8) shows that a high rate of deceleration (or large ('5) can make
the angle of attack « oscillations become divergent or even unstable, while the
pitching velocity ¢ by itself remains stable. Therefore, the remainder of the
analysis will be concerned only with the oscillations in the angle of attack .

For vehicles which are describing arbitrary paths through the atmosphere,
Allen’s equations are not strictly applicable because of the assumption of a
nearly straight trajectory. For this more general case, Sommer and Tobak (1959)
have derived the linearized equations describing the short period oscillations
about the mean trajectory motion. These authors start with the general equa-
tions of motion in tangent axes, i.e., Eq. (1), and under the assumption that
they have heen solved for the static or steady state trajectory, take small
perturbations in the angular variables about their mean or static values. By
separating these equations into perturbed and unperturbed components, sub-
tracting the unperturbed set out since they are identically satisfied, and then
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nondimensionalizing, they are able to reduce the equations describing the
short-period oscillations in angle of attack to the following equation:

(x“(S) + #Daa'(ﬁ') + #("4‘1(3) =0

V(s
D, = I('La - g-(('m(, + (',,,a' ) ] -+ —;—i?—)

' 15
Cy = [ — U((-'mu 5 “(-vmq(“Lu) s (ﬁ + T: )(' La] (9)

Since g is a very small quantity, all of the terms in ('; may be neglected by
comparison with the static moment term [see, e.g., Allen (1957)], and the
following basic equation is obtained which is analyzed extensively by Sommer
and Tobak (1959):

@/(5) + 1 + hlCh = 0(Caa + Ca)] [ o = poCoia = O (10)

Now for nonlinear aerodynamics, that is aerodynamic coefficients which are
functions of &, a, and 8,1t can be shown (although the derivation is quite lengthy
and, therefore, will be omitted here) that under the assumptions of Sommer and
Tobak a nonlinear equation can he obtained for the short period angle of attack
oscillations having a form nearly identical with Eq. (10). But with ', , ', now
dependent on a and o', and (', and (',,, dependent on «, these coefficients can
also be functions of .
By letting

rr -

J')(a,a’,s) = J,,' + (..i(-l"_ _ U((qu ED (,m;) (1)
uV da

({'(Q,S) = — a'(.'mu (a,s) (12)

Eq. (10) can be written in the more compact form
&’ (s) + pD(a,e8)a’ + uC(a,s)a = 0 (13)

We observe that for vehicles traveling at high speeds wherein the drag deceler-
ation term (—pu('p) is relatively large compared to the gravitational deceleration
term (gL sin v/17#), Eq. (11) for D(a,a’ s) can be simplified to the form of D in
Eq. (3). At low altitudes where the vehicle has attained a nearly steady-state
glide velocity, or for a vehicle on a skip trajectory, the relation V'/V = —u(C}y
is not valid, and E¢. (11) must be used for D(a,a’ s).

A useful form of Eq. (13) can be derived for high-speed vehicles (F//V =
—pu('p) descending or ascending through an exponential atmosphere (g = poe )
and over path segments short enough to consider the flight-path angle y constant.
The dimensionless form of this equation is easily obtained from Eq. (13) and is

o (1) + e X Do, er)e (r) + ¢ 5 Clayer)alr) = 0 (14)
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where ¢, K, and r are defined as follows:

‘= afa = i (ﬂu) - s o g s

Mm

and where y, is a nominal altitude. At all altitudes ¢, being a measure of the ratio
of air density to mean body density (since p = BSL/2m = p./2ps), is almost
always a small parameter of 0(10~! — 10-2). In addition, for altitudes y, below
a certain maximum, or for small enough flight-path angles v, the parameter eK
is also small, i.e., e K << 1.

Table I. AERODYNAMIC STABILITY DERIVATIVES FOR THE LONGITUDINAL MOTION
OF A MISSILE WITH CONSTANT THRUST

Cy

Cycosa — Cesin a

Cp=C,cosa+ Cysina

("m = ("mn,,__“. - gi (fYN ,l[ ((?') = %szSLCm
- X = [%pl’zS(('n cosa — Cpsina)] = 3pV *SC.

|
N
I

[3pV3S(CL cos a + Cp sin a)] = 3pV3SCy

aX udCe | uCe 8pj|
Ay = T - ;q (,'f o= S T
X ( ou )a_n._.,,- Rk [ ¢+ 2 du + 20 dudaco—w
- _ (X)) _ [ u %r] __ uS [t%‘c]
e = ( ow )a_ﬂ_u"' puﬁ [2 Jw a:():wi 2 da Ja—i—u

— y’ﬁ I:a("p _ C :t
g 2 da ok o= —cx
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( ax ) W5 L %C—‘"
e = — pPU: o b
= 2\ —a
dq /g=0 - q o
dp a
p() = p(Ra) exp [ — B — Ro)l; o = — Bo; B = —gp
) _ (QC_Q) _ [1 aCp (1 da f._h_t)}
aco N Ou Jaeo La oM dr i
o dp
() (%) s ey 2 (o) _ — a0
@ Ja=o a /amo du Q{ du
( dr ) ( dr )
_9(_192 _l_ézz)ﬁﬂ(ﬁ_mz)
— 2 pdr ' poar/ 2 P
_ (2% _ ol L wdCx  uCy _é‘_e}
N ( au )n—ﬂ—u-_ N PN‘S |:( o + 2 a 2}) (-iH o= 0=w
’ [ 6(1\:] pusS [6( L )
= — o _————— = —_— — —_— (‘
pus —2 aw a=0=uw 2 + D—a=”=l‘a
[ [Cx acC.
= —puS| | L = —puSN| ;| L
ol 5 \ g S| 5Ny
L u g=0 u d g=0=a
_ (SLL) _ 190 YA da /du
0 U /azo a c'U}' ar dr
a=I[
al w o’ m uC,, o :I
= T = SL 'm a a.. . AL
(élu)a#n_..- st |:( T 2 du + 20 duda—o

My = pttSL[

M,

M.,

= puSL

= puSL

t AC),

2 dw

] = pl{h L ]:
a=0=1w

1 aC,,

21 da

] a=0=u

_ pu_l}{;__ Co,
q=0 _'
9Cn
= pSL*| L.
w=0 7('}(1 5
u a=N=a
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Coy = (53_( _"_') = I + 4 aC,,

da Jw Jw
(",

Cui=(2=) _atace
Zoa |. T L odw
u a=0=a

SHORT-PERIOD OSCILLATIONS OF ASCENDING OR DESCENDING
VEHICLES

In this section we will investigate the combined effects of nonlinear aero-
dynamic forces and moments and varying air density on the short period
oscillations of vehicles ascending or descending through the atmosphere. The
basic equations we will study are Eqs. (13) and (14) and in the appendix we
have developed a general method for treating equations of this type. This method
is similar to the method of Krylov and Bogoliubov (1943) which is applicable
to autonomous systems having small nonlinear perturbations (i.e., quasi-linear
systems) and to the extension of this method by Bogoliubov and Mitropolsky
(1955) to nonautonomous systems with slowly varving time-dependent param-
eters. However, our technique differs somewhat from theirs in that it can be
used to analyze systems with comparatively large conservative nonlinearities
[i.e., in static moment ('(a,s) «]. Murphy (1957) and (1962) has employed a
similar technique, which he calls the “quasi-linear substitution” method, to
investigate the nonlinear time-dependent oscillations of spinning symmetrie
missiles, and in the simplification to longitudinal or planar motion his results
and ours for the amplitude and frequency characteristics essentially agree.
Murphy’s results are restricted, however, to the discussion of symmetric missiles
and in particular do not describe the effects of nonlinear asymmetries in the
static moment on the oscillatory motion. For this reason and others, we have
developed the present theory which accounts for these effects and provides an
algorithm for caleulating higher approximations to the motion,

The content of this section will be divided into four basie parts. In the first
part general formulas will be developed which give the frequency and amplitude
characteristics and the higher harmonies in the response of the motion in angle
of attack. In the second part we will briefly compare our results for the linearized
theory with those of other authors, namely Allen (1957) and Sommer and
Tobak (1959). In the third part we will investigate the effects of varying air
density on vehicles with nonlinear damping moments (Van der Pol type) and
will determine specifically the effect that this produces on the classic limit eyele
of Van der Pol which exists for time-independent parameters. In the final part
we will investigate the effects of nonlinear static moments on the oscillation and
specifically will produce results for quadratic and cubic nonlinearities in ('(a, 5) a.

Before proceeding to the general equations of the first approximation, we
must add a note of caution in the results of our analysis. This is that the oscilla-
tions are assumed to be longitudinal, taking place only in a plane. As a matter
of fact, this assumption is not always valid on account of the possible nonlinear




458 INTERNATIONAL COUNCIL — AERONAUTICAL SCIENCES

coupling between longitudinal and lateral modes which could cause the longi-
tudinal motion to be unstable with respect to small perturbations in the lateral
mode. This nonlinear coupling has been beautifully illustrated, experimentally
and numerically, by Waldron and Cheers in these very proceedings and is one
of the most important theoretically unsolved problems in the dynamics of
missiles and space vehicles. It is hoped that the methods developed in the
appendix to this work can be logically and practically extended to cope with
this important problem.

FIRST APPROXIMATION TO THE SOLUTION OF THE GENERAL
EQUATION OF SHORT PERIOD OSCILLATIONS

As described in the appendix, it is possible to introduce a transformation of
variables (a,a’) — (.1 ,8) such that the original differential equation for a, i.e.,
%q. (13), is transformed into a system for (1" and 6. By taking the transformation
in the form

a= Acosf + U(dds), o = — wlAdsing + V(A4,6,s)]
assuming A’ = (4 ,s)4 and 8’ = «(.1,5) to be dependent only upon o1 and s,

and that U/ A, V/ A, and §/w are small with respect to one, the first approxima-
tion to this transformed system is as follows:

1 o

o ,177\‘#,.., il
a= A icosb ('.*(.-l,x)nzz;' gy C.* (A,s) cos nﬂ% + 0(Vw)

; : A’ 40C,* (u'*)s
0 == Vucr (45 7 =8=— = "
A 0¥+ CF A) \4uCy*
1 .

+ = p])l*(--l,.\')) (16)

In the « equation, the =* is meant to exclude n = 1 from the sum. A similar

but more complex relation exists for «” but will not be presented here. In these

equations terms of order v/u have been omitted from a, and terms of order u*

and higher have been omitted from «?® and é. The parameters (',* and 1,* are

given by the Fourier expansions of ('(e,s)a and L(a,a’,s)a’ and are as follows,
for n # 0:

2r
C*(A,8) = L [ (' (A cos 6,5) cos 0 cos nb db
m™Jo
l Tox
D¥(A;s) = - / D(A cos 8, — wA sin 8,s) sin 8 sin nd df (17)
m™ Jo

The term Dy* = 0, and ('* is one half of the expression obtained by setting n =0
in the above equation for (',*. In Eq. (16) the following notation for total and
partial derivatives is used:

() = d/ds, ( )y =09/0s, ( )4 = 0/04
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The frequency, 68’ = w, is frequently called the static stability parameter and
the amplitude decrement, 6 = A’/.A, will be called the dynamic stability
parameter. It is important to note that the ratio é/w must be small, <1, for the
analysis to apply. In the linearized theory for constant coefficients and for larger
damping, the true frequency becomes w = \/,L-;(('l — uD\2/4) and it is possible
to modify the analysis of the appendix to account for this effect in the first
approximation. We also note that in order for the perturbation /.1 to be small,
the coefficients ((,*)(n* — 1) (/* must be small, and this assumption must bhe
checked individually in each case.

COMPARISON OF RESULTS FOR LINEARIZED THEORY

Several authors have investigated the linearized longitudinal oscillations of
reentry missiles and notable among these are Allen (1957) and Sommer and
Tobak (1959). Allen’s work applies to the reentry of high speed ballistic missiles
and is based essentially on Eq. (3), or its dimensionless form, Eq. (14), which
assumes an exponential density variation with altitude, a straight line trajectory,
constant coefficients, and the drag relation V'/} = —u('y,. The application of
the general formula of Eq. (16) to Eq. (14) for ' * = ¢',, I'/* = D, vields the
following results:

a=~Acosh 00 =wl)=VCe " = V=06, e " (18)
% ((:i)2 - Ej\' B %)l”dm (19)

where Dy = (', — (' — o((",p + ('5,) and the other parameters are given by
Eq. (15). By noting the fact that ekr = gy — yo) and dividing Eq. (19) by
w = 0, we obtain the following dimensionless amplitude equation which gives
the damping per evele and must be small for the analysis to apply:

1d1 3 1 8L sin Y 0 _ D, | Ho 38y (20)

Ade w4 e" 2 NV
For most reasonable vehicles the second term on the right is well behaved and
small for all altitudes above sea level, whereas the first term on the right is
unbounded as y — . What this means, of course, is that for altitudes above a
certain maximum the solution method breaks down and an oscillatory motion
ceases to exist. What essentially happens above this altitude is that the aero-
dynamic restoring moment is negligible and insufficient to prevent tumbling so
that once set into motion the missile will continue to tumble end over end unless
controlled by some other means. By equating the first term on the right in
Eq. (20) equal to 14 (a fairly small parameter), we may obtain the altitude y,

above which the motion essentially ceases to be oscillatory,

_2 | VvVl -
Y= 3 i [BL sin |‘y|] ()
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We shall eall this altitude the altitude of dynamic response. On the other hand,
at low altitudes the right-hand term involving D)y becomes large and may
dominate the density effect term. The altitude, y,, at which these two terms
become equal in absolute value is an indication of the relative strength or
importance of conventional damping in affecting the motion. This altitude will
be called the altitude of dynamic stability and is given by the following:

= l 1]1 [MDJJ (.).))

Ye B BL sin ||

By setting 7 = 8(y. — y), 0 = B(y, — y.) in the amplitude and frequency
equations or Eqgs. (18), (19) and integrating, we may derive the following
approximate solution for «

a =~ e " "M A" cos (2" + 6,)] (23)

In this equation the (4) sign applies to negative values of Dy, ete,

Now Allen (1957) has obtained an approximate solution to Eq. (14) in terms
of the Bessel functions J,, Yo, which is valid at all altitudes. For the initial
conditions (@ = ap, @’ = 0) at y = oo, this solution can be written

a = "M {ago(2¢") | (24)

Now for an appropriate choice of A, and 6, (i.e., A, = aoN/2/m, 0 = —7/4)
in Eq. (23), it is easily shown that the term in brackets in Eq. (23) corresponds
to the first term in the asymptotic expansion of J,. Eq. (24) and the asymptotic
envelope, v/2/7 ¢4, have been plotted in Fig. 2 for zero damping (i.e., 7o = o).
Also shown are the envelopes for various values of 5, corresponding to negative
damping (i.e., D, < 0). It is interesting to note in this figure how the high
altitude response of a reentry vehicle is correlated by a single parameter, the
altitude of dynamic response, y,.

For vehicles transversing a curved flight path, and at low altitudes and
velocities where the high-speed approximation V'/V = — u(’'}, ceases to be valid,
Allen’s results do not apply. Sommer and Tobak (1959) have investigated this
more general problem and, in particular, have succeeded in obtaining an approx-
imate solution to Eq. (13) for linearized aerodynamics [or ((a,s) = Ci(s),
D(a,a’,s) = Di(s)]. A modified W.K.B. approximation technique is used by
these authors and their results can be expressed using the notation of this paper
as follows:

’
a=Acos8, & =VuC, éfzézw{

qC1)' | B (p
ey + 9 [CL,,1

= 0(Cng + Ca)lf  (25)

In this equation ¢ is the dynamic pressure and by noting that for linearized
aerodynamics the D, of Eq. (16) can be written Dy = V'/uV + (1, — o(C,,
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+ ), le.g., see Eq. (12)], it is easily seen that Eq. (16) can be reduced to the
form of Sommer and Tobak.

In level steady flight, (¢(';)" = 0 and Eq. (25) reduces to the familiar result
for the short period oscillations of aircraft with small damping. It is interesting
to note that it is really the derivative of dynamie pressure ¢ and not the density
g that forms the contribution of time varying parameters to the dynamic
stability of vehicles.

THE EFFECT OF VARYING AIR DENSITY ON THE NONLINEAR
DAMPING AND LIMIT MOTIONS OF VEHICLES

For vehicles in nearly level flight, or at low altitudes where the density
variation along the flight path is negligible, the nonlinear amplitude relation in
Eq. (16) becomes time-independent or autonomous and its analysis is consider-
ably simplified. Under these conditions, Murphy (1957) has treated extensively
the more general case of spinning symmetric missiles and, more specifically, has
ascertained and investigated the existence of stable and unstable limit motions
or periodic solutions. In the one dimensional planar case under consideration
here, the limit motions become limit cycles and were investigated originally by
Poincare and then Van der Pol. The question before us here is what effect, if
any, do the slowly varying parameters have on these limit motions? In order to
fix ideas and conclusions, we will consider a simple example consisting of a
vehicle with a linear static moment, i.e., (' = (', and a Van der Pol type non-
linear damping moment, i.e., D = D; + D;a®. In addition, we will make Allen’s
assumptions as to the character of the trajectory (i.e., straight-line, V'/V =

1.0 T T T T T

T

0.5

a/a,
o

-05F
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—u('p, u = pee®v). In this case Kq. (14) is applicable, and for simple Van der Pol
damping, it reduces to the following equation:

&' (r) + e X'Cia(r) = — s (D) + D)o (1) (26)

Application of the equations of the first approximation to Eq. (26) gives the
following result for the amplitude equation:

{1'(7-) _ JK — 1K (D, + 1 DAY } e b 4 Bl (27)

Now for K = 0, this equation reduces to the classie result of Van der Pol or
Krylov and Bogoliubov (1943). For D, < 0, Dy > 0, a stationary oscillation, or
limit cycle, exists with amplitude 4% = A, ? = —6,/6; = —4D,/D,.

We will now investigate the case of varying air density in which the parameters
6, and §; are no longer constant. For this purpose we note that Eq. (27) can he
put into the form A" — 6,4 = §;1° which will be recognized immediately as a
Bernoulli equation. By multiplying by 1/4%, Equation (27) can be rewritten as:

ld 1) bs(eKn) 1 .
(26. dr + 1) (Az) T bi(eKr) T A Lo*(eKr) o)

and will be recognized as a linear equation for A=2 The term A (eKr) is the
stationary amplitude that would obtain if §; < 0, §, > 0 and if the dependence
on ¢Kr were neglected. This equation is easily integrated in closed form, and the
result for A is given as follows:

? ] 4
A= .408‘“2[1 - .’11)‘ [ (as/ag)ewddl] (29)
0
where ¢ = ¢(r) = fo' 26,(r) dr, and where A, is the initial amplitude. This

equation can be treated by a number of numerical methods, but perhaps it is
more useful to integrate Eq. (27) directly on an analog or digital computer as
Murphy (1957) does in the extensive application of his Amplitude Plane. We
note by observing Eq. (28) that there are two parts to the solution, namely,
homogeneous and inhomogeneous parts. In the autonomous case, the inhomo-
geneous solution, .1 = A, represents the stationary oscillation amplitude if
63/61 < 0,

In the nonautonomous case we will denote this inhomogeneous part as the
limit solution, and we note that it represents the oscillation amplitude a vehicle
would have if traveling in disturbed flight for some time. This solution can be
expressed formally as follows:

A.-2 _ _ ¢ ¢ = = §§
-11, = (4 [(63/61)6 d¢ = 1 + D 61 (30)

and where the indefinite integral is shown to indicate the neglect of the inte-
gration constant. D is the differential operator d/d¢. By substituting the specific
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expressions for &, and &, of Eq. (27) into Eq. (30), we may obtain the following
solution for .1;7%:

5 —1
B e s ““(1 - 3 2a' '1) i~ £ (31)

— xdr

where r = Ke!¥7/2D, = — (sqgnK)efv—u) for Dy < 0 and where y, is the altitude
of dynamic stability given by LEq. (22). For small values of r, the solution to
Eq. (31) may be expanded in power series of r. Neglecting terms of higher order
than x, we obtain the following result for the time-dependent limit cycle:

Ap =~ Ay (1 — 3z) = Ar, [1 + } (sgnK)e @] (32)

and where A, is the value of the stationary limit eyele amplitude for K = 0
(ory, = ). It is interesting to note that this result shows that to a first approx-
imation the time dependent limit eyele is equivalent to the case in which 8, and
8y are considered constants. It is also seen that the limit amplitude is smaller in
descent and greater in ascent than the idealized value A, . For altitudes above
¥« there is apparently no simple expression for .1, and the complete equation
must be considered.

THE EFFECTS OF NONLINEAR STATIC MOMENTS

In this part we will briefly discuss the effect of nonlinear static moments
on the short period oscillations of ascending or descending vehicles. Again, in
order to fix ideas and conclusions, we will assume a specific form for the static
moment. The simplest form that still displays most of the important character-
istics of asymmetric vehicles is the following one which contains quadratic
and cubic nonlinearities in a.

Cla,s)a = Cha + Caa® + Cia’ (33)
No specific form for the damping moment D(a,a’,s) will be assumed, and
thus by substituting Eq. (33) into Eqs. (16 and 17), we obtain the following

first approximation equations for a vehicle with linear plus quadratic and cubic
static moments and negligible damping.

e = L0 . 9
A lcoq 64+ YT [—1CA (1 1 cos 26)

+ % C3A® cos 36]}'

A? 8C, + 6. ) WCD. (g9

¥ =0 ul:+10CA%), F=i=~- (8('"'4??)'('_31 140,

In discussing these equations, we would like to first point out that to a first
approximation the asymmetrical components (i.e., (', ete.) in the static moment
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do not affect the oscillation frequency or decrement. This is due to the fact that
any modification in the oscillation characteristic on one side of the origin,
a = 0, is reversed in sign on the other side by the asymmetric components, and
thus the average value of these effects over a cycle is canceled out. The average
ralue over a cycle of the symmetric nonlinearities is not zero, and this explains
their appearance in the frequency and amplitude equations. We do note, how-
ever, that in the expression for « the situation is different with the asymmetric
nonlinearity, (", playing a somewhat more dominant role than the symmetric
one, and even giving rise to a nonzero mean value to the oscillation amplitude.

This mean value for « is

o C,A/2 ]
e = [('. + 3 Ca4® 39

And if the oseillation amplitude is finite over a significant portion of the trajec-
tory, then the asymmetric component may give rise to an induced lift which
may cause the vehicle to depart from its nominal trajectory.

The second point we would like to make is that although large symmetric
nonlinearities (i.e., (';3.1%) may exist, this does not necessarily imply that the
approximation method should break down. For example, if (', = (', = 0 and
('; > 0, the approximate solutions for e and « become

— ;cos 0 + J, cos :;9{ w=41nCs 4 (36)

In the Appendix, the exact sclution for .1 = constant, (', = 0, in terms of
Jacobian elliptic functions, is discussed and compared with the approximate
result. It is found that even when €'; = 0 and ('; > 0 (i.e., the above case) the
errors in the approximate results for @ and w are less than 2 percent. This result
clearly demonstrates the increased power of this method over that of Krylov
and Bogoliubov since their method completely fails in this case (i.e., their
/(Cy +

3 C';1%) as in our case, becomes infinite as (', — 0). In addition, we have com-

perturbation term, being proportional to (';.12/C, rather than to (';.1%

pared in Fig. 3 the approximate results of this paper and those of Krylov and

Bogoliubov for the frequency (e, @ = V() + 3 (342 and w =~ u((, +
2 ,12/0)) with the exact elliptic function solution. It is found there that the

approximate result of this paper is considerably more accurate than the Krylov-
Bogoliubov approximation for all values of ("y.1%/u(';, = e.12,

Our final comment on the effects of nonlinear static moments applies to the
amplitude equation. Here we find that the effect is to multiply the linear decre-
ment, that is, the value the decrement § would have if no static nonlinearities
existed, by a term nonlinear in .1? which reduces to one for small amplitudes or
small perturbations (i.e., C3.12/(';). This result also differs somewhat from that
of Krylov and Bogoliubov whose result does not contain this multiplicative
factor. Murphy (1962) has arrived at the same result as we have through the
application of his “quasi linear substitution” method and has compared this
result with the results of his “perturbation”™ method and those of the exact
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numerical integration of the equation of motion. He finds that both analytical
results predict the correct qualitative behavior for this multiplicative factor but
that his perturbation method is considerably more accurate. However, we must
state that we do not see how this superior method is capable of being extended
(1) to more general nonlinearities in which an exact solution to the equation of
conservative motion is not known, or (2) to predicting the effect of static moment
perturbations in the nonlinear frequency relation. In addition, we might add
that the result of Eq. (34) shows much better correlation with 8('; + 9(';.1*
replaced by 8(('; + (';.12). There seems to be no theoretical justification for
making this simple change, but we believe that it should be possible to get a
more accurate correlation by resorting to the higher approximations.

EFFECT OF LIFT ON THE PHUGOID OSCILLATIONS AT
HIGH SPEEDS

We will now investigate the long period oscillations of a high-speed missile
that is operating at a nearly constant lift coeflicient with a propulsive thrust
that nearly balances the drag force. This corresponds to the classical low speed
phugoid oscillations that are associated with negligible angular pitching mo-
ments, because of the slowness of the oscillations, and a negligible resultant
drag force. This classical long period oscillation corresponds to a direct exchange
between the kinetic energy and the potential energy at the constant lift coefficient
corresponding to the trimmed steady state value for zero pitching moment.

3
EXACT
2 /
1+ €A?
|
EXACT
€<O0 €>0

0

0 | 2 3

Fig. 3.
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Since we are assuming a nearly constant lift coefficient, it is to our advantage
to use the axes system that is always tangent to the flight path, as shown in
Fig. 1, so that if we include the variation in the gravitational attraction we can
write Eq. (1) for this application as

2 2
mV =T — % szSCn — mg ({E‘) sin vy = — 7ng(if—n) ¥

2 >2
mVy = 3 pV28CL — m [g (TR-) — IT] cos vy

2 -2
=~ 1 pV28CL — m [g (—'Rf) - l*]

-
BH 4+ a— @) =1pVSLC,. =0 (37)

Then we can linearize Eq. (37) for the long period oscillations in the following
manner:

i—c,in = v; (i‘—i‘i/)—‘c‘o"‘- = 19
V L Y = V ]’/2 Y - 3 e

r(t) = Rl + «0]; V() =UN +68(0)]

o) = o) |1+ LR]; 5 = 22
p i
Us ~ — %@é; b~ — %@e + constant

--,,ann( ) el g ]
€ = R |:ntg “—Re + 26 ) + 2¢ + oR (26 €)
S s [L“ (L = R") ol F{]e + constant
R mg \F* P

T _pUZSQ_L_( __U_”)_ : _ U .
mg  2mg l gR a- = g i

Therefore, the long-period or phugoid oscillation with a constant lift coefficient
has a period Q!'_

g J'_g_[z é‘.‘.(_: p)]‘
T_-TrlR F +mg I —Rp




NONLINEAR DYNAMIC STABILITY OF SPACE VEHICLES 467

72

n U, %&ﬁy .
=R ™ constant = 26,400 <1 (39)

The last expression for the period shows that as the speed decreases we even-

tually attain the classical low speed phugoid value of 4/2 = (U/g), but for all

supersonic speeds this classical value is greatly decreased by the usual atmos-
. . . ") .4 ’

pheric density gradient. For example, in the earth’s atmosphere

1 1

p’ 1 = | e
P 95 % 107 1t >>Iﬁ§*:31><@“’l (40)

Consequently, at an average flight speed of 1,500 ft /sec any long period oscilla-
tion is decreased by a factor of 0.623 from the classical low-speed value of
V2 7 (U/g), while at a speed of 10,000 ft/sec it is decreased by a factor of 0.12.
This effect is nearly all produced by the atmospheric density gradient. It is only
after the flight speeds have nearly attained orbital speed, i.e., F' — 1, that effect
of the change in the gravitational force has any significance.

The simple expression for the phugoid period that is given in Eq. (39) is in
good agreement with the numerical values calculated by Etkin (1961) for either
the constant thrust rocket engine or the air-breathing engine whose thrust
varied with the density. Equation (39) is also valid at or near orbital speeds,
and it proves that a resultant lift force always decreases the orbital period of a
satellite since p'/p < 0.

If we include a resultant drag force then we can also obtain an aerodynamic
damping which is given by

F(_ﬁ)ﬁ
NS Sy ;
exXp mU (,Y,r '

‘ _ 2 ( 2m )

i ( 3 ) + 7 T\ sk,
2 2 [fz
Ly =mg (1 — F°); P = 675 <1 (41)
APPENDIX

ANALYSIS FOR THE SHORT-PERIOD OSCILLATIONS

We will now outline the mathematical technique which is used to analyze
Eq. (13) for the nonlinear time-dependent oscillations of unpowered vehicles on
arbitrary paths through the atmosphere.

The type of system we will analyze has the following form:

a”(s) + wi'(s)a = fla,a',s) (42)

where f and w, are slowly varying functions of s, that is, dw,/ds and af/ds are
small quantities with their higher order derivatives being small quantities of
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order arf/dsm = 0 (af/as)". It is also assumed that the function f can be split
into conservative and nonconservative parts, 1e. fla,a’,s) = gla,8)a +
h(a,a’,s)a’, and that a periodic solution to Eq. (42) exists for h = 0, for s =
sg = constant in wy(s) and g(a,s) and for some domain of initial conditions
(a,a’) = (ap,a) encircling but not necessarily including the origin (a = 0,
a’ = 0). Finally, it is assumed that the nonconservative part of f(a,a’,s), i.e.,
h(e,a’,s), is small with respect to the conservative part of the equation or
wol($)a — gla,s)a.

To facilitate the analysis, we shall rewrite Eq. (42) in first-order form by
taking @ = a;, @2 = o’ = a;’. We will then have the two first-order equations:

) = ag, ay = — wuz(-ﬁ‘}al(s) + ,f(al,azys) (43)

The essential theme of the analysis of this equation is to introduce a trans-
formation of variables (a;,as) — (A ,6) which is dependent upon several arbitrary
functions (w,,U,V). The system of differential equations for «; and a» thus
transform into a system for 4 and 6. The prohl2m then becomes one of choosing
wi, U, and V in such a manner that these transformed equations are simplified
and are thus made easier to analyze. The details of this procedure will become
clear in the following.

The specific form of the transformation is

a; = A cos 8 + U(AB,s), ay = — wi(Ad,;s) [Asing + V(Ab8s)] (44)

where I7 and V are periodic in 8 with period T = 2x. By setting cos 8 = (e’ +
e=%),sin @ = 1/2i(e?? — e~ ) and U + iV = Z(A,6,s) e, substituting these and
Eq. (44) into Eq. (43), adding them, and then after some algebraic manipulation,
we may obtain the following complex relation between A’, ¢', and w,, Z and f;

2{Zd + (1 + ZDA" + ZJ + {0 + i@ — 0” — we)](A + Z)}
= {[w’ — i(w® — )] + Z)e~*™ — zie (A + Z,A + Z,0,5)} (45)

In this equation ( )’ = d/ds, ( ), = 8/ds, ( )a = 9/9A, and ( )y = 8/96.
Now on account of the arbitrary nature of w;, and Z, we have several alterna-
tives open for the analysis of Eq. (45). One alternative is the classic variation of
parameters method whereby Z is chosen identically zero, and «, taken equal
to wo. Eq. (45) is considerably simplified, and by separating real and imaginary
parts, two separate equations for A’ and 6’ can be obtained which have the form

A" =5(A,05)4, 0 = w(A8s) = wi(s) + 2(4,6,5) (46)

It will be noticed that these equations contain A and 6 and, thus, being unsepa-
rated in these variables, represent no essential simplification with regard to
integrability. Although several procedures are available for the analysis of Eq.
(46), it has been found preferable to work directly with Eq. (45) and, more
specifically, to attempt to assign or determine Z(A,8,s) in such a way that the
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transformed differential equations, Eq. (46), are independent of 8. We, therefore,
set A" = 6(A,8)A and 8" = w(A,s) in Eq. (45) and after rearranging obtain
the following equation for Z(A,0,s,w,):

P o e ﬁ; BlL 4 H) = 2] Tt A== e e, e 20
— [’ — i’ — we)A + 2)e > + 2 f(A + Z, A + Z, 8,5,11)} (47)

Now for the analysis of this equation there are again several alternatives avail-
able. However, most of them depend upon the following order of magnitude
restrictions which enable Z to be put equal to zero as a first approximation in
the right-hand side of Eq. (47) and which we will assume to be satisfied in further
calculations:

(12|74, |Za|, w|Z]|/]|f48,5)]) < <1 (48)

In this equation, f(A,8,s) is f(4 + Z, A + Z ,8,s) with Z set equal to zero.
Thus, taking Z = 0 in Eq. (47), we obtain the following equation for the first
approximation to Zy:

1 ;
Zy = — 5— {[Quwd + @) + iQuwiw — @’ — w)]4 — [w'

2w

— i@’ — wo)]Ae " + 2de  f(A,0,5)} (49)

Now in this equation we have the two undetermined functions § and w which
are the expressions for A4’/ A and ' and also the undetermined parameter w;. By
expanding f into complex Fourier series, f = F, e, F, = 1/2x [77f(  )e-? de,
and imposing the condition that Z be periodic in 8 (which is essentially the
condition that the mean value over a period of Eq. (49) be zero), we may inte-
grate Eq. (49) w.r.t. 6 and obtain the following relations for the first approxima-
tions to 8, w, and Z.

- A(w12 + wnz) — 2F1£(A,S,W1) {1_’ -

a4 = 20,4 ¥ g =%
e c-u'A i 2F1J(A,S,w1) e
= 2 A (50)
7= (0 £ = B =1 {1 el 4 ta = ud)] Aa ™
2wy 2

«©

2 itn— .
== _E n‘:_l Fre s (-')1)

F.r, F.r are the real and imaginary parts of F, respectively, and we note also
that F, is a function of w,. In Eq. (51) Z¢(4,s) is an arbitrary function of (A,s)
which essentially is an integration constant of Eq. (49). The X in Eq. (51) omits
the term n = 1.
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Now in order that Eqs. (50) and (51) be valid approximations, the assump-
tions of Eq. (48) must be satisfied. The precise calculation and comparison of
terms requires considerable analysis and will not be gone into here. If these
conditions are satisfied, then higher approximations may be obtained by per-
turbation or iteration of Eq. (47).

We will return to the real variables a« and «’ by substituting Eq. (51) into
Eq. (44). Since Z, is arbitrary, we shall choose it such that the coefficients of
cos 8 and sin 6 in the perturbation or summation term of « vanish, and we are
thus left with

1 - 2 y
a = Acosf+ o {Fa + nzzgrl-_:? (For(A,S) cos nb
— F.r(A,8) sin nﬁ)} (52)
A similar but more complicated result for o’ is obtained but will not be written

here. In Eq. (52) the coefficients F,g, F,r are related to the coefficients in the
real expansion of f in terms of sin né cos né as follows:

J=A¢+ 2 (A, cos nf + B, sinnd) =2 (Fur + iF.)e™
1 —m
FI) . AD, ['YnR = F—nR = '%Any Fn! = - F—nl = %Bn

Now, up until this point we have left the choice of w, completely arbitrary.
We will now consider two important choices for w,.

M wme s= gy ﬁ Bl me -
= B A1(A4,8,w0) (53)
B m=s et Bl o messll
2w 2wa

—imu@m (54)

In case (1) we have the results of Krylov and Bogoliubov (1943) for d,0/ds =
df/ds = 0 and that of Bogoliubov and Mitropolsky (1955) for d.,/ds and af/ds
small quantities. For the approximation to be valid in this case, B;/2w¢*4,
A1/2we®*A must be small with respect to 1. Thus, it is seen that this Krylov-
Bogoliubov-Mitropolsky approximation breaks down as the unperturbed
frequency wq becomes small of the order of A,/ A4 or B,/ A. Now it is known that
although the unperturbed frequency w, may become small or vanish in Eq. (42),
there is a class of functions F and initial conditions ay, a¢’, such that a periodic
solution about the origin exists. This is the conservative dynamical system
where f has the form f = g(a)a and w,? is a constant. In this case, the Fourier
expansion of the exact solution can be written as a series in cos nf where 68’ =
v(E), and E is the initial condition, amplitude, energy or some other constant of
the motion. Now for a wide range of values of E, this expansion of the solution
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is rapidly convergent and may be well approximated by the first harmonic
A(E) cos 6, while on the other hand the frequency »(E) is not at all approximated
by wo? which in some cases may even be negative. In this case of the conservative
dynamical system and for small nonconservative perturbations of it, an appro-
priate choice of w, in Egs. (50) and (51) may give a superior and more uniformly
valid approximation for w and 4. If the exact frequency, »(E), of the conservative
system is known and if E can be related to the coefficient of the first harmonic,
i.e., E = E(A), then an appropriate choice could be w,(A) = »[E(A)].

An alternative choice for w; is that of case (2) above or Eq. (54). In this case,
the specific form of w (and w;) as a function of A and s is not always given
explicitly since the coefficient A, also contains w. In many cases, A, does not
contain w and in this case we have an explicit relation for w? This choice for w,
has been previously assumed above.

In order to illustrate the method in the case of a large conservative non-
linearity and to indicate its accuracy, we will now investigate the following
dynamical system:

o’ (s) + u(Cia + Csa’) = 0 (55)
where u, ('}, and ('; are constants. This equation has exact solutions periodic

about the origin and which can be written in terms of the Jacobian elliptic
functions sn and cn as follows:

(1) C; <0 a = apn(hs + K(m) m)
o<n—;c“°‘—“2—<1 P= o+ 3 %) (56)
=00 £ Caagh— ™ G + 3l ')
(2) C; >0 a = aoty(As/m)
1 Caaoz 2 v 2 -
DEm=cle——r———1] < 1, No=u(C 4 Caae’) (57)
1 + C;&n

In both cases the natural frequency of oscillation is given by w = [2K(m)/7A]7!,
where K (m) is the complete elliptic integral of the first kind [see Milne Thompsen
(1950)]. The approximate solutions for w; = wp and w; = w are easily calculated
and yield:

' 1 C.A° |
(1) W = wo a=A lcosﬂ + o= 320, cos 36(
’ v ';(/3A <
A = constant, & = w = VuC; |1 + . (58)
-1
2) = = A J’c s + ( Cad” )cos 36
S S ks Ci + 3 CsA® f

A = constant, 8’ = w = [u (C; + 3 C34°)]} (59)
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The exact and the two approximate frequency relations of Eqs. (56)—(59) for
p('; = 1and ('; = e under the assumption that A equals the exact amplitude, ay,
are compared in Fig. (3). It is seen that for ¢ > 0 the Krylov-Bogoliubov approx-
imation, Eq. (58), rapidly departs from the exact solution for values of v/¢ A
greater than about 34. On the other hand, the improved approximation of Eq.
(59) gives a result which is very accurate (within 2.24 percent) of the exact
result for all e > 0. For negative values of ¢, the improved approximation also
gives a more accurate result than the Krylov-Bogoliubov method but apparently
breaks down as v/|¢| A approaches one and w becomes less than 14. However,
much of this inaccuracy is due to the fact that the parameter A was taken
identically equal to the exact amplitude . If we use Eq. (59) to calculate o as
a function of A, and then invert this relation to obtain A as a function of ay,
we may plot the improved approximate frequency as a function of v/|€| a.

. : . p | 2 E

Using the approximate inverse relation of 4 = « (I + % )
32 1 + £ e a2

we find that for —eay?> = 1, the approximate frequency is 1/7 whereas the exact

frequency vanishes. Assuming «y = A, the approximate frequency at —ea)® =

—eA? = 1is 14, and we thus see the increased accuracy of using the actual
amplitude of the oscillation rather than the approximation ay = A in the fre-

quency relation of Eq. (59).

We may also compare the approximate solutions for « against the exact result.
It is found that although the Krylov-Bogoliubov approximation breaks down
for 'y — 0, ("; > 0, the improved result is regular being a = A(cos 8 + Y4 cos 36)
for ('; = 0. In this case, m = 14 in the exact solution, Eq. (57), and it is found
that the improved approximation for « is in error by at most 1.09 percent (at
6 = w/4 where a approx = 0.650 a; and « exact = 0.6434 ).

As a final note, we would like to comment on the extension of the methods
described above to the analysis of nonlinear systems with more than one degree
of freedom. We have performed this analysis for the equations of a spinning
symmetric missile, and the results appear in a form quite similar to the one
dimensional results of this section except that now there are two systems
Ay = 6(Ay, As,s) Ay and 0 = wi(A,, As,s), where ¢ = 1,2, in place of one.
These equations are nearly identical with the results of Murphy (1957 and 1962)
with the exception that the higher harmonics in the perturbation are obtained
directly by our method. We have also looked into the application of these
methods to the motions of asymmetric missiles. In principle the method is
fairly direct but the algebra becomes very complicated, and we, as yet, have
been unable to obtain results useful to the ballistician or aerodynamicist.
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DISCUSSION

Author(s): E. V. Laitone and T. J. Coakley

Discussor: K. T. Benedikt, Northrod Space Laboratories

Whenever the coefficients of the (linearized) equations of motion can be approximated

by linear functions of the independent variable, the integrals are expressible in terms of
Bessel functions. Indeed, some of the graphical representations of the numerically
obtained solutions do suggest the behavior of such functions. Comments as to the range
of validity of the above approximation would be of interest.

Author’s reply to discussion:

The question is simply that of asking under what conditions can the variable
coefficients in the equation of motion be replaced by their linear expansions. By
referring to Eq. (3) of the paper, and assuming D, and (', constant, we find that
the variation in the coefficients of the equation of motion is simply due to the
variation in u(s). Thus, if ua(s) = wo 4 ws is the linear expansion of u, then the
relative error between this and the exact value is A = (g — p.)/p and this provides
a means for determining the accuracy of the linear expansion in the approximate
equation of motion. If we assume an exponential variation in density with altitude,
ie.. u = uoe #, and are interested in the accuracy of the linear expansion in the
vicinity of a given reference altitude, yo. then the relative error as written above
becomes

Aly — o) = 1 = [1 — Bly — yo)] Fvv®

This error attains a value of 0.104 or 10.+ percent for 3(y — yo) = 0.4, and 0.061
or 6.1 percent for 8(y — yo) = —0.+.

Thus, in order to keep the relative error less than about 10 percent, the altitude
hand over which the approximation is to apply should not exceed 2(y — yo)max =
Ay = 2 X 0.4 X 23,000 or roughly 20,000 ft.





