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ABSTRACY

Theoretical analyses are made for the linearized philgoid oscillations of

powered vehicles in steady level flight and for the nonlinear short period oscil-

lations of unpowered vehicles on ascending or descending flight paths. It is

found that the atmospheric density gradient will produce a large decrease in

the classical phugoid period and that this etket increases with velocity until

orbital speeds are approached.

The linearized slmrt peri(id oscillations are analyzed using both body axes

and axes tangent to the flight path; the resulting linearized equations with

tnne-dependent coefficients are shown to coincide only if the effect of accele-

ration is properly considered in the replacement of by The nonlinear

oscillations are governed by a similar equation, except that now the coeffi-

cients are functions of the angle of attack and its derivative. A new expansion

procedure is introduced which enaldes the approximate analysis of this

nonlinear time-dependent equation to be made. It is found that the instan-

taneous frequency and the dynamic stability factor which are

ctinstant in the usual case of constant coefficient aenalynamics, liectime

functions both (I f time and the oscillation antplitude

SYMBOLS

( .1,0) =  Oscillation amplitude and argum (nt Jcods in angle of

:Mack oscillation

B =  moment of inertia about y axis

0)
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= dimensionless aerodynamic coefficients; see Table I

(( o D.,k) = dimensionless coefficients in expansion of nonlinear static

and damping characteristics in a and a'

	

F y R = ratio of flight speed to circular orbit velocity

acceleration of gravity, ft sec'

	

L S reference length and area, 


vehicle mass, lb/(ft/sec2)

= pitching velocity

R,, y distance from earth's center to vehicle, ft


altitude of vehicle above earth's surface, ft

y = distance from earth's surface to steady state orlt of

vehicle, ft see Fig. 1
dimensionless distance traveled along trajectory; s

I "(if L

= flight velocity, ft/sec

(n , w) = axial and normal velocity components of velocity ill body

axes, ft sec

X ,Z = axes fixed in body

Z' = axes fixed in space with origin at center of earth

horizontal component of flight velocity, ft sec

= (See Fig. 1 )
air  d(nsity, (mass ft")

In 1,2 / 11 , A = pS1.: `2111 , =
,/

EQUATIONS OF MOTION

I'sing the axes system that is always tangent to the actual flight path, Allen

(1957) presented the linearized equations of motion for a hypersonic nonrolling

missile having a longitudinal plane of symmetry and trimmed to follow a nearly

zero-lift trajectory. The equations used by Allen to predict the short-period

longitudinal oscillations during high rates of acceleration or deceleration may be

written as follows (e.g., see Sommer and Tobak, 19.50):

= - p1'2 S(' D — mg  sin 7 T cos a

= 'SC (g )-- cos 7 + T sin a
r

B — = p1 -2sLc.

j.  = V sin 7; —

V cos 7
(1)

In these equations  CD, L, C„, are tlte nondimensional drag, lift, and moment

coefficients (see Table I) attd are, in general, nonlinear functions of a,  a,  and  O.

The other symbols and variables are illustrated in Fig. 1.
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The second set of eqUati011S NVith WI 11(11 WC Will he concerned is written in

terms of axes fixed •in tlte vehicle so as to coincide with the principal body axes,

as (e.g., see Laitone,  1959):

wg) = 7' — — sin

— uq) = — pl""SC + mg cos

; SLC„,

11
=

= 112 + 11,2• w = sill a = 11 tan a (2)

The variables and symbols in these equations art' illustrated in Fig. 1, and the

derivatives of the aerodynamic coefficients arC presented in Table I.

For the tangent axes system of Eq. (1), .kllen (1957) gave the linearized

equation of motion for a hypersonic nonrolling reentry missile having a longi-

tudinal plam• of symint•try and trimmed to follow a nearly zero-lift trajectory.

Allen also assumed constant aerodynamic stability derivatives, negligible

gravitational acceleration, and an exponential density variation with altitude.

V

X

EARTHS SURFACE

Ro

X

Fig. I.
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This equation which governs the linearized short period oscillations in angle of

attack of a reentry missile can be written in dimensionless form as follows:

ans) + AD la' (s) 1.1C (s) = 0

= [cl.„ — — cr (' m«)I (3)

= [ — (C.„ AC.,1'1„) C 19' — Lj'Dip

where the independent variable s represents the number of body lengths traveled

along the trajectory and is related to time by the following relations:

p(s)SL
S = l' (7) dr; p(s) — 2»1 <<

d( ) d( d2( ) r d2( )( (4)
L ds dt2  L / ds2

+
L2 ds

'Hie same analysis was done by Laitone (1939) using the body axes system of

Eq. ('2). By making essentially the same assumptions as Allen . Laitone obtained

an equation in terms of the normal velocity w, rather than the angle of attack

in the following form:

w"(s) AD2w' (s) AC 2w (s) = 0

_ac ac rn, a,,1
D2 = L ai„

r2 [ av ac,” 1 d(p1T .v„)]
\aW A L aq aw  p ds j (5)

This equation can now be shown to be identical with that of Allen if the

correct values of C„,„ and ('„„ are introduced in place of aC„,/aw and ac/aw.
This is accomplished as follows:

w = w' = aT ar; w" = a"1- 2aT' ((i)

and (noting that C„,,„ etc. are dimensionless, whereas a('„, aw, etc. are not)

ac
dcm ( v,u,) —[ m du, + acm [acm (l_da

	

aw aw aw

ac . .
+ ,

aw'(ixdt- + Vd:oe adl" i'dad — + i-arm)d.

(1.0C )



NONLINEAR DYNANuc ST.‘1311.1Ty OF SPACE VEHICLES 453

so t hat

ac„, .ac„,_ —aa t aw --aw

C" L aa  L Ow ; aw '" V2 "'"
ac„, 1-2ac„, .

(7)

The last set of equations shows that C„,0, is no lmiger given directly by C„,„, in

ameleraied motion. This is a very important point since the theoretical calcu-

lations actually yield C„, and C„,„, directly, and in the past these have been

assumed to give C„,„ and C„,c, precisely.

By inverting Eq. (7) for ('„,„. and C„,„. in terms of C„,,„ and C„, employing the

velocity equation which relates I" to CD under the assumption of negligible

gravity (i.e., V? = —a ( 'D ), and expressing CN in terms of Cr. and CD (i.e.,

Cx,„ = D), it is easily shown that Laitone's equation, i.e., Eq. (5),
reduces to Eq. (3) or Allen's result.

It is also of interest to inspect the explicit expression for the variation of the

i)itching velocity q during the short period longitonlinal oscillations, which can

be obtained from 2.q. (5), if we assume that C„, is negligible so that

(ins) + AD3(/' (8) + AC3q(s) =

1)3 = lC — —
PIA

	

= al — — 12( „,, C nvj (8)

Fortunately, C„,„. can be very small in hypersonic flow; consequently, this

expression fo, the pitching velocity is valid for this important case. A comparison

of Eqs. (9) and (8) shows that a high rate of deceleration (or large (D ) can make

the angle of attack a oscillations become divergent or even unstable, while the

pitching velocity q by itself remains stable. Therefore, the remainder of the

analysis will be concerned only with the oscillations in the angle of attack a.

For vehicles which are describing arbitrary paths through the atmosphere,

Allen's equations are not strictly applicable because of the assumption of a

nearly straight trajectory. For this more general case, Sonnner and Tobak (1959)

have derived the linearized equations describing the short period oscillations

about the mean trajectory motion. These authors start with the general equa-

tions of motion in tangent axes, i.e., Eq. (1), and under the assumption that

they have been solved for the static or steady state trajectory, take small

perturbations in the angular variables about their mean or static values. By

separating these equations into perturbed and unperturbed components, sub-

tracting the unperturbed set out since they are identically satisfied, and then
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nondimensionalizing, they are able to reduce the equations describing the

short-period oscillations in angle of attack to the following equation:

a" (s)  kiD 4a'(8) bi(' 4a(s) = 0

" (s
1) 4 = — a (C.q )

1)

= [ — a (l ,C „) + (9)

Since is a very small quantity, all of the terms in may be neglected by

comparison with the static moment term [see, e.g., Allen (1937)], and the

following basic equation is obtained which is analyzed extensively by Scunmer

and 1. obak (1959):

)1"
a" (8) -1- +Aria— ci (C.q( —a = (10)

Now for mmlinear aerodynamics, that is aerodynamic coefficients which are

functions of a, a, and 0,'it can be shown (although the derivation is quite lengthy

an (l , therefore, will be omitted here) that under the assumptions of Sommer and

Tobak a nonlinear equation can be obtained for the short period angle of attack

oscillations having a form nearly identical with Eq. (10). But with C„, now

dependent on a and a', and and C„ dependent on a, these coefficients can

also be functions of s.

By let t ing

	

D (a,a' ,$) =   "- ((' „,;‘) (11)
AT  (I a

C (a ,$) = — (a,$) (12)

Eq. (10) can be written in the more compact form

a" (s) 1.11)(a,a' ,$)a' (a,$)a = 0 (13)

We observe that for vehicles traveling at high speeds wherein the drag deceler-

ation term ( —/.1CD) is relatively large compared to the gravitational deceleration

term  (gL  sin 7/ l'u), Eq. (11) for D(a,a', s) can be simplified to the form of DI in

Eq. (3). At low altitudes where the vehicle has attained a nearly steady-state

glide velocity, or for a vehicle on a skip trajectory, the relation 171' = —AlCD

is not valid, and Eq. (11) must be used for D(a,a; s).

A useful form of Eq. (13) can be derived for high-speed vehicles (V71'


descending or ascending through an exponential atmosphere (I.L =


and over path segments short enough to consider the flight-path angle -y constant.


The dimensionless form of this equation is easily obtained from Eq. (13) and is

a"(r) cc D(a,a',Er)a'(r) C (a ,u)a (1
• ) = 0 (14)
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where E, K, and  r  are defined as follows:

E = V YALO fiji() K
(OL  sin 7)

and where yo is a nominal altitude. At all altitudes E, being a measure of the ratio

of air density to mean body density (since = (3SL,i2m = p0j2pb), is almost

always a small parameter of 0(10-I — 10-2). In addition, for altitudes yo below

a certain maximum, or for small enough flight-path angles 7, the parameter EK

is also small, i.e., Eli << 1.

Table I. AERODYNAMIC STABILITY DERIVATIVES FOR THE LONGITUDINAL MOTION

OF A MISSILE WITH CONSTANT THRUST

455

(15)
II in

- UY
eL

V

"••• ...

CD

Cc

= C N  cos a — sin a

CD = C , cos a C N  sin a

= C CN (G) = 1072SLC„,

X — [D3V2 S(C D cos a — C L sin a)] = 2SC ,

z = (cL COS a + C„ CE)] = 1[11/.2SCN

X,, — 	

a it a= 0= u,

u aCc uCe Op
— puS C c + 2  Ou

+ --„--- -,—[

axW _
a= 0= u,

pus [u ace
2 atv

us [ace
P aa „=0=u

us [0CD= cL
2 aa
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ax [L

auccko
x,

(

,T),_0= — PuS

ap ap
PO') = P(Rn) exp — 00' — Ro)]; = OP; UP• ar ar

(ac acD acu aa /du
31

	

au)u_o ),,-0 [a am 1- ar  dr) LO

(( ),-)pr)ap
-au — du -rd'3uP= (17) — (u) ; a — p ,a a=0 a

di ) dr )

	

aa a  =( 1 ap 1 ap a pa)
— —

	

ar 2 p ay p ar
)

2
(

--- (

	

z u -' — puS +
u ac .v

+
uc N dp

C x ---
611

=
a=0=Iv 


[u ac puS [ac,
,2

aa
" + CD]

2  awic,_0=„7
—

Zq = — puS[—(I,
2 -- (WI — — puSL

q
q=

2 -11- a

(acN ac ac „ aa I du.)1
.11

0u)„=0 (
—

)a=0 [a all di di.

—
(am 


31„ — puSL[C„,
au)„,=0=t„ 2 au 2p  Ou ,„=0

111„. = puSL[2u
3wi.=

puSL 1 aCm
[2

3I, = puSL[ -I= (laf!")]
u q=0_

puSL2
9-

C„,

u ac,u
= puS1_,[— = pSL2 L

2  aw ,;.=„
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ac' ac„,.w„,
+ 	( aw aw

-

L.,.
211 


—

---oa L aw

SHORT-PERIOD OSCILLATIONS OF ASCENDING OR DESCENDING

VEHICLES

In this section we will investigate the combined effects of nonlinear aero-

dynamic forces and moments and varying air density on the short period

oscillations of vehicles ascending or descending through the atmosphere. The

basic equations we will study are Eqs. (13) and (14) and in the appen (Iix we

have developed a general method for treating equations of this type. This method

is similar to the method of Krylov and Bogoliubov (1943) which is applicable

to autonomous systems having small nonlinear perturbations (i.e., quasi-linear

systems) and to the extension of this method by Bogoliubov and Mitropolsky

(1933) to nonatitonomous systems with slowly Va Tying time-dependent param-

eters. However, our technique differs somewhat from theirs in that it can be

used to analyze systems with comparatively large conservative nonlinearities

fi.e., in static moment  C , al. Murphy (1937) and (196.'2) has employed a

similar technique, which he calls the "quasi-linear substitution" method, to

investigate the nonlinear thne-dependent oscillations of spinning symmetric

missiles, and in the simplification to longitudinal or planar motion his results

and ours for the amplitude and frequency characteristics essentially agree.

urphy's results are restricted, however, to t lie discussion of symmet ric missiles

and in particular do not describe the effects of nonlinear asymmetries in the

static moment on the oscillatory motion. For this reason and others, we have

developed the present theory which acconints for these effects and provides an

algorithm for calyulating higher approxitnations to the nraion.

The content of this section will be divided into four basic parts. In the first

part general formulas will be developed which give the frequency and amplitude

characteristics and the higher harmonics in the response of the motion in angle

of attack. In the second part we will briefly compare our results for the linearized

theory with those of other authors, namely Allen (1937) and Sommer and

Tobak (1939). In the third part we will investigate the effects of varying air

density on vehicles with nonlinear damping moments (Van der Pol type) and

will determine specifically the effect that this produces on the classic limit cycle

of Van der Pol which exists for time-independent parameters. In the final part

we will investigate the effects of nonlinear static moments On the oscillation and

specifically will produce results for quadratic and cubic nonlinearities in  C(a,$)  a.

Before proceeding to the general equations of the first approximation, we

must add a note of caution in the results of our analysis. This is that the oscilla-

tions uie assumed to be longitudinal, taking place only ill a plane. As a matter

of fact, this assumption is not always valid on tecotilit of the possible nonlinear
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coupling between longitudinal and lateral modes which could cause the longi-

tudinal motion to be unstable with respect to small perturbations in the lateral

mode. This nonlinear coupling has been beautifully illustrated, experimentally

and numerically, by Waldron and Cheers in these very proceedings and is one

of the most important theoretically unsolved problems in the dynamics of

missiles and space vehicles. It is hoped that the methods developed in the

appendix to this work can be logically and practically extended to cope with

this important problem.

FIRST APPROXIMATION TO THE SOLUTION OF THE GENERAL

EQUATION OF SHORT PERIOD OSCILLATIONS

As described in the appendix, it is imssible to introduce a transformation of

variables (a,a') —> (.1,0)  such  that the original differential equation for a, i.e.,

Eq. (13), is transformed into a system for . I ' and 0'. By taking the transformation

in the form

a = A cos 0 + U (A,0,$), a' = — co LI sin 0 -I-  U(A ,0,$)]

assuming A' = 6(.1 „O.I and 0' = co(..1 „s) to be deFenc!cnt only urcii A and .N.,

and that 17 1 , IT/.I, and 1/ w are small with respect to one, the first approxima-

tion to this tninsfonned system is as follows:

a ----, A cos 0 — C„* (A,$) cos n0 + 0(N/A)

O co
A

CI* (A ,$) = —4(* _)( (11(v I*) s

(',4"1:4\

+ /11)1*(_1)) (1(i)

In the a equation, the .1:* is meant to exclude n = 1 from the sum. A similar

but more complex relation exists for a' but will not be presented here. In these

equations terms of order -v/i2 have been omitted from a, and terms of order 1.42

and higher have been omitted from co and S. The parameters l'„* and D„* are

given by the Fourier expansions of Oa ,.s')a and /;(a,a',$)a' and are as follows,

for n
.27,

C(21 COS 0,$) cos 0 cos nO (10
. 0

1.2'
—D(A cos 0, — coA sin 0,$) sin 0 sin nO (10 (17)

The term Do* = O. and l'„* is one half of the expression obtained by setting n = 0

in the above equation for In Eq. (1 (i) the following notation for total and

partial derivatives is used:

( )' =  (1/(1s, ( ), = a/as, ( a/aA
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The frequency, 0'  = w, is frequently called the static stability parameter and

the amplitude dp(reinent ô =  A' .1, will be called the dynamic stability

parameter. It is important to note that the ratio  6/0)  must be small, <<1, for the

analysis to apply. In the linearized theory for constant coefficients and for larger

damping, the true frequency becomes w = AA.1(C1 — and it is possible

to modify the analysis of the appendix to account for this effect in the first

approxiination. We also note that in order for the perturbation 1 to be small,

the coefficients  (( „*)(n'  — 1) must be small, and this assumption must be

checked individually in each case.

COMPARISON OF RESULTS FOR LINE.ARIZED THEORY

Several authors have investigated the linearized longitudinal oscillations of

reentry missiles and notable among these are Allen (1937) and Sommer and

Tobak (1939). Allen's work applies to the reentry of high speed ballistic missiles

and is based essentially On Eq. (3). or its dimensionless form, Eq. (14), which

assumes an exponential density variation with altitude, a straight line trajectory,

constant coefficients, and the drag relation FYI' = —ACD. The application of

the general formula of Eq. (10) to Eq. (14) for CI* = P,* = P, yields the

following results:

aA cos  0, 0, (r) = w(r) = \' Cle--`  Kr  2 =( 7C„, K "

fK f/),  _,K,

A
—

(r) 49

when' = (' 1) ( ' r.„) and the other parameters are given by

Eq. (13). By noting the fact that  fKr = ,)3(y — yo)  and dividing Eq. (19) by

w = 0', we  obtain the following dimensionless amplitude equation which gives

the damping per cycle and must be small for the analysis to apply:

1 (1.1 ô 1 i3Lsin-y)i,,D1
_

0.)-y:1 (104 1.0ci2 ( c7,
(20)

For nmst reason:tide Vehicles the second term on the right is well behaved and

small for all altitudes above sea level, whereas the first term on the right is

unlmunded as y .  What this means, of course, is that for altitudes above a

certain maximum the solution method breaks down and an oscillatory motion

ceases to exist. What essentially happens above this altitude is that the aero-

dynamic restoring moment is negligible and insufficient to prevent tumbling so

that once set into motion the missile will continue to tumble end over end unless

controlled by sonic other means. By equating the first term on the right in

Eq. (0) equal to I (a fairly small parameter), we may obtain the altitude yr

above which the motion essentially ceases to be oscillatory,

[ AC1 

yr  = In (21)

0 0/, sin
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We shall call this altitude the altitude of dynamic response. On the other hand,

at low altitudes the right-hand term involving Di becomes large and may

dominate the density effect term. The altitude, y„ at which these two terms

become equal in absolute value is an indication of the relative strength or

importance of conventional damping in affecting the motion. This altitude will

be called the altitude of dynamic stability and is given by the following:

= 1 [
4'011)11


sr, sin -y1
(22)


By setting n = 0(yr — y), = 13(yr — yi in the amplitude and frequency

equations or Eqs. (18), (19) and integrating, we may derive the following

approximate solution for a

a e±e"""[A 0e-"i4 COS (2e" + 00)] (23)

In this equation the (+) sign applies to negative values of DI, etc.

Now Allen (1957) has obtained an approximate solution to Eq. (14) in terms

of the Bessel functions .10,  Yo, which is valid at all altitudes. For the initial

conditions (a = ao, a' = 0) at y = Do, this solution can be written

a = e±e'-'014 la0J0(2eni2) ) (24)

Now for an appropriate choice of Ao and 00, (i.e., :10 =  ao /171-, 00 = — /  4)
in Eq. (‘23), it is easily shown that the tern] in brackets in Eq. ('23) corresponds

to the first term in the asymptotic expansion of Jo. Eq. ( N) and the asymptotic

envelope, .0/r e-',14, have been plotted in Fig. 2 for zero damping (i.e., no = x ).
Also shown are the envelopes for various values of no corresponding to negative

damping (i.e., DI < 0). It is interesting to note in this figure how the high

altitude response of a reentry vehicle is correlated by a single parameter, the

altitude of dynamic response, y,.
For vehicles transversing a curved flight path, and at low altitudes and

velocities where the high-speed approximation ceases to be valid,

Allen's results do not apply. Sommer and Tobak (1959) have investigated this

more general problem and, in particular, have succeeded in obtaining an approx-

imate solution to Eq. (13) for linearized aerodynamics [or C(a , 8) =

, = Di(s)]. A modified W.K.B. approximation technique is used by

these authors and their results can be expressed using the notation of this paper

as follows:

a = A cos 0, 0' = AC
A' (qC 

A — 6 4qC,'=.), IC"

—  o-(C„,„ C,„,„')](-(25)

In this equation q is the dynamic pressure and by noting that for linearized

aerodynamics the Di of Eq. (16) can be written Di = I7107  — 0-(C
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[e.g., see Eq. (1.2)], it is easily seen that Eq. (16) can be reduced to the

form of Sommer and Tobak.
In level steady flight, (q( 1)' = 0 and Eq. (25) reduces to the familiar result

for the short period oscillations of aircraft with small damping. It is interesting

to note that it is really the derivative of dynamic pressure q and not the density

that forms the contribution of time varying parameters to the dynamic

stability of vehicles.

THE EFFECT OF VARYIMi AIR DENSITY ON THE NONLINEAR

DAMPING AND LIMIT MOTIONS OF VEHICLES

For vehicles in nearly level flight, or at low altitudes where the density

variation along the flight path is negligible, the nonlinear amplitude relation in

Eq. (16) becomes time-independent or autonomous and its analysis is consider-

ably simplified. Under these comfitions, Murphy (1957) has treated extensively

the more general case of spinnMg symmetric missiles and, more specifically, has

ascertained and investigated the existence of stable and unstable limit motions

or periodic solutions. In the one dimensional planar ease under consideration

here, the limit motions become limit cycles and were investigated originally by

Poincare and then Van der Pol. The question before us here is what effect, if

any, do the slowly varying parameters have on these limit motions? In order to

fix ideas and conclusions, we will consider a simple example consisting of a

velficle with a linear static moment, i.e., ( = CI, and a Van der Pol type non-

linear clamping moment, i.e., D = + D3a'.  In addition, we will make Allen's

assumptions as to the character of the trajectory (i.e., straight-line, I/7V

1 0

0.5
n0=5

7
9

N 0

-0.5

-1 06 -4 -2 0 2 4 6 8 10

7/=.7i-Y

Fig. :2.
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1-1('D. e-"). In this case Eq. (14) is applicable, and for simple Van der Vol
damping, it reduces to the following equation:

a"(r) e- *ICC (r) = — EC'K' (DI + D3a2)a' (r) (2(i)

Application of the equations of the first approximation to Eq. (26) gives the
following result for the amplitmle equation:

A1(r) ) K

A (r) E *Kr  (1)1 + Dag) kr- = i + 63A2 (27)

Now for K = 0, this equation reduces to the classic result of Van der Poi or
Krylov and Bogolitibov (1943). For D, < 0, 1)3 > 0, a stationary oscillation, or
limit cycle, exists with amplitude .42 = A r.„2= —51/53 = —4D1/D3.

We will now investigate the case of varying air density in which the parameters
Si and 5, are no longer constant. For this purpose we note that Eq. (27) can be
put into the form A' — 51.4 = 63:13which will be recognized immediately as a
Bernoulli equation. By multiplying by 1/A3, Equation (27) can be rewritten as:

( 1 d
\25,  dr A2/ — 6,(EKr) = L02(EKr)+ 1(53

(EKr) 1 	
(28)

and will be recognized as a linear equation for A-2. The term A  L„(EKr) is the
stationary amplitude that would obtain if 53 < 0, SI > 0 and if the dependence
on  air  were neglected. This equation is easily integrated in closed form, and the
result for A is given as follows:

.4 = A0e2 [1 — 0 j ((53/61)e4"dd (29)

where 0 = 0(r) = 251(r)di,  and where A 0 is the initial amplitude. This
equation can be treated by a number of numerical methods, hut perhaps it is
more useful to integrate Eq. (27) directly on an analog or digital computer as
Murphy (1957) does in the extensive application of his Amplitude Plane. We
note by observing Eq. (28) that there are two parts to the solution, namely,
homogeneous and inhomogeneous parts. In the autonomous case, the inhomo-
geneous solution, À = L 0, represents the stationary oscillation amplitude if
53/51 < 0.

In the nonautonomous case we will denote this inhomogeneous part as the
limit solution, and we note that it represents the oscillation amplitude a vehicle
would have if traveling in disturbed flight for some time. This solution can be
expressed formally as follows:

A L-2= — e-4 f (63/(51)e44 —
1 D SI  (30)

and where the indefinite integral is shown to indicate the neglect of the inte-




gration constant. 1) is the differential operator d/d0. By substituting the specific
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expressions for  (53and 61  of Eq. ('27) into Eq. (30), we may obtain the following

solution for .1L-2:

A
D31

(1 ) (1 — .r)
2 (

L = —
1

— -2
D /

— .r
	 (31)

w here .1. = K e KT = —(synK)coo, "s' for D, < 0 and where  y. is the altitude

of dynamic stability given by Eq. ('..1'.1).For small values of  .r,  the solution to

Eq. (31) may be expanded in power series of .r. Neglecting terms of higher order

than  .r,  we obtain the following result for the time-dependent limit cycle:

:I • lc,  (1 — = :11.„ 11 + (sunik)e
d( y--y. )

] (32)

and where .1L„ is the value of the stationary limit cycle amplitude for I: = 0

(or q. = x). It is interesting to note that this result shows that to a first approx-

imation the time dependent limit cycle is equivalent to the case in which SI and

53  are considered constants. It is also seen that the limit amplitude is smaller in

descent and greater in ascent than the idealized value f  Lo• For altitudes above

y„ there is apparently no simple expression for .1L, and the complete equation

must be considered.

THE EFFECTS OF NONLINEAR STATIc MOMENTs

In this part we will briefly discuss the effect of nonlinear static moments

on the short period oscillations of ascending or descending vehicles. Again, in

order to fix ideas and conclusions, we will assume a specific form for the static

moment. The simplest form that still displays most of the important character-

istics of asymmetric vehicles is the following one which contains quadratic

811(1cubic nonlinearities in a.

	

C(a,$)a = + C2a2 C3a3 (33)

No specific form for the damping moment  D(a,a',$)  will be assume (l , and

thus by substituting Eq. (33) into Eqs. (16 and 17), we obtain the following

first approximation equations for a vehicle with linear plus quadratic and cubic

static. moments and negligible damping.

a :1 yos0 + c3:12] — C2:1 (1 — cos  20)

C3:12 COS  3011.

(C1
(FiC + GC3:12)

(34)Al 31- C3:12),
8C1 9C3A 'IV!!

Iii discussing these equations, we would like to first point out that to a first

approximation the asymmetrical components (i.e., (2 , etc.) in the static moment
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do not affect the oscillation frequency or decrement. This is due to the fact that


any modification in the oscillation characteristic on one side of the origin,

= 0, is reversed in sign on the other side by the asymmetric components, and

thus the average value of these effects over a cycle is canceled out. The average

value over a cycle of the symmetric nonlinearities is not zero, and this explains

their appearance in the frequency and amplitude equations. We do note, how-

ever, that in the expression for a the situation is different with the asymmetric

nonlinearity. C2, playing a somewhat more dominant role than the symmetric

one, and even giving rise to a nonzero mean value to the oscillation amplitude.

This mean value for a is

a. = — A
CI -1- e3- 1 2

And if the oscillation amplitude is finite over a significant portion of the trajec-

tory, then the asymmetric component may give rise to an induced lift which

may cause the vehicle to depart from its nominal trajectory.

The second point we would like to make is that although large symmetric

noulinearities (i.e., ('3.12) may exist, this does not necessarily imply that the

approximation method should break down. For example, if CI = C2 = 0 and
> 0, the approximate solutions for a and w become

1-7a = A cos t9 +1 .1_ cos 36 w =,tiC3 A2 
 (36)

In the Appendix. the exact sclution for .1 = constant, = in terms of

Jacobian elliptic functions. is discussed and compared with the approximate

result. It is found that even when CI = 0 and C3 > 0 (i.e., the above case) the

errors in the approximate results for a and w are less than 2 percent. This result
clearly demonstrates the increased power of this method over that of Krylov
and Bogoliubov since their method completely fails in this case (i.e., their

perturbation term. being proportional to C3,12 Ci rather than to C3.12:4', +
( ,.12) as in our case, be (-omes infinite as C, 0). In addition, we have com-

pared in Fig. :I the approximate results of this paper and those of Krylov and

Bogolinbov for the frequency (i.e., w = + (312) and w 1.1(Ci

"s3 I'll with the exact elliptic function solution. It is found there that the

approximate result of this paper is considerably more accurate than the Krylov-
Bogoliubov approximation for all values of C3.12/ALC, = 12.

Our final comment oil the effects of nonlinear static moments applies to the

amplitmle equation. Here we find that the effect is to multiply the linear decre-

ment, that is, the value the decrement  5  would have if no static nonlinearities
existed, by a term nonlinear in ..12which reduces to one for small amplitudes or

small perturbations (i.e., C3.12/( '1). This result also differs somewhat from that

of Krylov and Bogoliubov whose result does not contain this multiplicative

factor. Murphy (1962) has arrived at the same result as we have through the

application of his "quasi linear substitution" method and has compared this

result with the results of his "perturbation" method and those of the exact

(35)
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numerical integration of the equation of motion. Ile finds that both analytical

results predict the correct qualitative behavior for this multiplicative factor but

that his perturbation method is considerably more accurate. However, we must

state that we do not see how this superior method is capable of being extended

(1) to more general nonlinearities in which an exact solution to the equation of

conservative motion is not known, or (t.?) to predicting the effect of static moment

perturbations itt the nonlinear frequency relation. In addition, we might add

that the result of Eq. (34) shows much better correlation with SC, 9C3.12

replaced by S(C, ('3 .12). There seems to be no theoretical justification for

making this simple change, but we believe that it should bc possible to get a

more accurate correlation by resorting to the higher approximations.

EFFECT OF LIFT ON THE PHUGOID OSCILLATIONS AT

HIGH SPEEDS

We will now investigate the long period oscillations of a high-speed missile

that is operating at a nearly constant lift coefficient with a propulsive thrust,

that nearly balances the drag force. This corresponds to the classical low speed

phugoid oscillations that are associated with negligible angular pitching mo-

ments, because of the slowness of the oscillations, and a negligible resultant

drag force. This classical long period oscillation corresponds to a direct exchange

between the kinetic energy and the potential energy at the constant lift coefficient

corresponding to the trimmed steady state value for zero pitching moment.

3


2

II
1.3/8EA2

1+1€A2
4

EXACT

EXACT

If %CA2

0
2 3

rig. a.
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Since we are assuming a nearly constant lift coefficient, it is to our advantage
to use the axes system that is always tangent to the flight path, as shown in
Fig. 1,so that if we include the variation in the gravitational attraction we can
write Eq. (1) for this application as

= T — pV2 — m
R )2g sin  -y —

mVy = p172 SC — ntr g 0-?-)2 — lcos -y
L \ r /

pV2 S. [g (±02

« — 9.•) = WSW". (37)

Then we can linearize Eq. (37)for the long period oscillations in the following
manner:

—v= sin -y-y;
V

= Cos 1,
V2

r(t) = RE1 €(1)]; V (t) = IT [1 + SW]

p(r) = p(B) [1 + e-'ed •
P
' — 91-)

p - a).

qR. gR
US —

'
— --2€ +  constant

u2
g [L° 	 RE + 26) + 2E + ( 26 — E)
R mg p gR

—

g [Lo( 2 _  Rp') F21,
R mg F2 p

+ constant

LO pU2SC (— — — = F2) ; F2  2U (38)
mg 2mg gR gR

Therefore, the long-period or phugoidoscillation with a constant lift coefficient
has a period v!.

T = 27 {-fr [F2 + ?In'g() (F2, — Re;)]

R j 1 ( 2 R= 271-—u

= 1/2 r + [—(1 — F2) — -R1-(2 — F2)1}
g 2g p

ing F2 F2 p
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u2
ft/sec 2

— constant —1
gR(  26,400 j<

(39)

The last expression for the period shows that as the speed decreases we even-

tually attain the classical low speed plulgoid value of Ak2 7i ( (7 /g), but for all

supersonic speeds this classical value is greatly decreased by the usual atmos-

pheric density gradient. For example, in the earth's atmosphere

1




ft '— > >
1 1

(40)

	

22 X 103 I? 21 X 106

Consequently, at an average flight speed of 1,500 ft /sec any long period oscilla-

tion is decreased by a factor of 0.6'23 from the classical low-speed value of

N/52  r ( ( 7g), while at a speed of 10,000 ft/sec it is decreased by a factor of 0.12.
This effect is nearly all produced by the atmospheric density gradient. It is only

after the flight speeds have nearly attained orbital speed, i.e., F  1, that effect

of the change in the gravitational force ilas any significance.

The simple expression for the phugoid period that is given in Eq. (39) is in

good agreement wit.h the numerical values calculated by Etkin (1961) for either

the constant thrust rocket engine or the air-breathing engine whose thrust

varied with the density. Equation (39) is also valid at or near orbital speeds,

and it proves that a resultant lift force always decreases the orbital period of a

satellite since p'/p  < 0.
If we include a resultant drag force then we can also obtain an aerodynamic

damping which is given by

exp

(7 2
Lo = mg (1 — F2);

gl?
(41)

APPENDIX

ANALYSIS FOR 'I'lIE SHORT-PERIOD OSCILLATIONS

We will now outline the mathematical technique which is used to analyze

Eq. (13) for the nonlinear time-dependent oscillations of unpowered vehicles on

arbitrary paths through the atmosphere.

The type of system we will analyze has the following form:

a" (s) wo 2 (s)a = f(a,a',$)  (42)

where f and 04 are slowly varying functions of s, that is, awo/as and ()Pas  are
small quantities with their higher order derivatives being small quantities of
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order a'f/as" — 0 (3fias)". li is also assumed that the function f can be split

into conservative and nonconservative parts„ i.e.,  f(a , a' ,$) =  q(a „Oa +

h(a ,a' ,$)a',  and that a periodic solution to Eq. (42) exists for  h =  0, for z =
So = constant in wo(s) and  g(a,$)  and for some domain of initial conditions

(a , a') = (ao,  ao')  encircling but not necessarily including the origin (a =  0,

a' = 0). Finally, it is assumed that the nonconservative part of f(a , a' ,8), i.e.,

h(a,a',8),  is small with respect to the conservative part of the equation or

wo'(s)a — g(a,$)a.

To facilitate the analysis, we shall rewrite Eq. (42) in first-order form by

taking a = a1, a2 = a' = a11.  We will then have the two first-order equations:

	

= a2, — wo2(8)a,  (s)  ,az  ,$)  (43)

The essential theme of the analysis of this equation is to introduce a trans-

formation of variables  (a1,a2)—> (A ,0)  which is dependent upon several arbitrary

functions (col,  U, V). The system of differential equations for al and ao thus

transform into a system for A and  O.  The problem then becomes one of choosing

U,  and V in such a manner that these transformed equations are simplified

and are thus made easier to analyze. The details of this procedure will become

clear in the following.

The specific form of the transformation is

= A cos  0 + U (A ,O,$),  a2 = — ,8) [A sin  0 + V (A As) 1  (44)

where U and V are periodic in 0 with period  T =  27r. By setting cos  0 = (e'°

sin  0 = 1/2i(e'' — e—i°)  and  U iV = Z(A ,0 , s) eil,  substituting these and

Eq. (44) into Eq. (43), adding them, and then after some algebraic manipulation,

we may obtain the following complex relation between ;1',  0',  and w1,  Z  and f;

2co1l Z00' + (1 + ZA)A' sl 1[Wi' i(26.)10' — cal2 —  0002)](A  Z)

= [col' —  i(cei  2 — 0702)RA  Z)e—" — (A + Z,A Z,0,$)}  (45)

In this equation ( )' =  d/ds, ( ), = a/as, ( = a/aA, and ( )6 = a/ae.
Now on account of the arbitrary nature of col and  Z,  we have several alterna-

tives open for the analysis of Eq. (45). One alternative is the classic variation of

parameters method whereby Z is chosen identically zero, and col taken equal

to con. Eq. (45) is considerably simplified, and by separating real and imaginary

parts, two separate equations for A' and  0'  can be obtained which have the form

	

A' =  (5(A,O,$)A, 0' = w(A,8,$) = coo(s) S-2(A,O,$)  (46)

It will be noticed that these equations contain A and  0  and, thus, being unsepa-

rated in these variables, represent no essential simplification with regard to

integrability. Although several procedures are available for the analysis of Eq.

(46), it has been found preferable to work directly with Eq. (45) and, more

specifically, to attempt to assign or determine Z(A As) in such a way that the
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transformed differential equations, Eq. (46), are independent of O.We, therefore,

set .-1/ =  6(.1 ,$)i and 0' = ,$) in Eq. (43) and after rearranging obtain

the following equation for Z(A,O,s,(41):

1 

Zo  = 120)4(1 +  Z4)6A [col' + i(2colco - 2 - w02 )1(A Z)
2cocol

— [col' — i(w12 — .02)R
4 +  ,4 e-2'9  2ie-'°f(4  Z,  .4  Z,  0,8,0.01 (47)

Now for tbe analysis of this equation there are again several alternatives avail-

able. However, most of them depend upon the following order of magnitude

restrictions which enable Z to be put equal to zero as a first approximation in

the right-hand side of Eq. (47) and which we will assume to be satisfied in further

calculations:

(1ZI/A, IZA1, cod ZsMf(A,O,$)j)  < < 1 (48)

In this equation, f(.1  ,O,$) is f(A  Z„.1 ,0 , s) with Z set equal to zero.

Thus, taking Z = O in Eq. (47), we obtain the following equation for the first

approximation to Zo:

z, =
'2ww:

11(2c01(3 + col') i(2colco - - coo')1/1 - [col'

 i(0)12 - (.002

)1Ae-2 '' f(A,O,$)1  (49)

Now in this equation we have the two undetermined functions 6 and w which

are the expressions for A'/A and 0' and also the undetermined parameter coi. By

expanding f into complex Fourier series, f  =  F„ =  1/27r  fo2"f ( )e-i'" (10,
and imposing the condition that Z be periodic in 0 (which is essentially the

condition that the mean value over a period of Eq. (49) be zero), we may inte-

grate Eq. (49) w.r.t. Oand obtain the following relations for the first approxima-

tions to 6, co, and  Z.

A (coi2 co02 ) - 2F1R(A,S,col) A'O' = c„, - = 6
2w1A A

	

-
- 2Fli(A,s,col)

(50)

1 	 11 .
Z = (U Zo(A,$)  9wwi 9 EU0 (0)12 — wo2 )1 AC2 i°

Fne (51)

F F n1 are the real and imaginary parts of F„ respectively, and we note also

that F„ is a function of col. In Eq. (31)  Z0(.-1,$) is an arbitrary function of (A ,  s)
which essentially is an integration constant of Eq. (49). The in Eq. (51) omits

the term n = 1.
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Now in order that Eqs. (50) and (51) be valid approximations, the assump-

tions of Eq. (48) must be satisfied. The precise calculation and comparison of

terms requires considerable analysis and will not be gone into here. If these

conditions are satisfied, then higher approximations may be obtained by per-

turbation or iteration of Eq. (47).
We will return to the real variables a and a' by substituting Eq. (51) into

Eq. (44). Since Zo is arbitrary, we shall choose it such that the coefficients of

cos û and sin 0 in the perturbation or summation term of a vanish, and we are

thus left with

1  a
= A cos 0

2
F0 + 2_, (F„R(A,S) cos nO

WWI — n'

— F„,(A,S) sin nO)}  (52)

A similar but more complicated result for a' is obtained but will not be written

here. In Eq. (52) the coefficients F,,R, F„, are related to the coefficients in the

real expansion of f in terms of sin  nO  cos  nO  as follows:

f = A 0 -1--  (A„ cos nO B„ sin nO) = E (F„R iF„I)em°

Fo = Ao, F„R = F-„R = 1A„, = — F_„, = 1B„

Now, up until this point we have left the choice of wi completely arbitrary.

We will now consider two important choices for w1.

	

wo' 1 

= coo —

D
,s,coo), co coo(s)

	

2coo 2w0A
1

—  Ai(A,s,wo)  (53)
2A we

w'1
w = w	 ô = — —B1(A,s,w),


2w 2wA
w2o w 2(s )

1
— — Ai(A,s,w)(54)

A

In case (1) we have the results of Krylov and Bogoliubov (1943) for 3,,o/as
0  and that of Bogoliubov and Mitropolsky (1955) for a„,o/as and apas

small quantities. For the approximation to be valid in this case, /31/2042A,
A1/2w0°A must be small with respect to 1. Thus, it is seen that this Krylov-
Bogoliubov-Mitropolsky approximation breaks down as the unperturbed

frequency coo becomes small of the order of Al/A or Bi/A. Now it is known that

although the unperturbed frequency womay become small or vanish in Eq. (42),
there is a class of functions F and initial conditions ao, an', such that a periodic

solution about the origin exists. This is the conservative dynamical system

where f has the form f = g(a)a and coo' is a constant. In this case, the Fourier

expansion of the exact solution can be written as a series in cos nO where O'
v(E), and E is the initial condition, amplitude, energy or some other constant of

the motion. Now for a wide range of values of E, this expansion of the solution
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is rapidly convergent and may be well approximated by the first harmonic

A (E) cos  0,  while on the other hand the frequency v(E) is not at all approximated

by co,32which in some cases may even be negative. In this case of the conservative

dynamical system and for small nonconservative perturbations of it, an appro-

priate choice of col in Eqs. (.50) and (51) may give a superior and more uniformly

valid approximation for co and  S.  If the exact frequency, v(E), of the conservative

system is known and if E can be related to the coefficient of the first harmonic,

i.e., E = E(A), then an appropriate choice could be com(A) = v[E(A)].
An alternative choice for col is that of case (2) above or Eq. (54). In this case,

the specific form of  co  (and coi) as a function of A and is not always given

explicitly since the coefficient A I also contains co. In many cases„-1, does not

contain co and in this case we have an explicit relation for co2.This choice for col

has been previously assumed above.

In order to illustrate the method in the case of a large conservative non-

linearity and to indicate its accuracy, we will now investigate the following

dynamical system:

a"(s) 1A(Cia C3a3) = 0 (55)

where  A, CI,  and C3 are constants. This equation has exact solutions periodic

about the origin and which can be written in terms of the Jacobian elliptic

functions  sn  and  en  as follows:

(1) C3 < 0 a = aosn(Xs K ( m ) in)

— Cacto2 

m 2C, -I: C3a02

(2)C3 > 0 a = aoc„(Xs/m)

X2 = (CICA02) (56)

1 ( C30102 )
01X2 = p(C1 + C302) (57)0 < m —  9  cv, caw 2

In both cases the natural frequency of oscillation is given by co = [2K(m)/71-X]-1,

where K(m) is the complete elliptic integral of the first kind [see Milne Thompsen

(1950)]. The approximate solutions for col = coo and col = co are easily calculated

and yield:

col = COOa =
1 C3A 2 


k COS0 +  32 ci cos 30(

A = constant, 0' = w = VC1 + 3 C
8 CI

(58)

col = wa =
1 ( 	 C3A 2 )

t cos °
_1_

32 \CI + C3A 2
cos 30}

A = constant, 0' = w = [A (CI + C3A2 )11 (59)
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The exact and the two approximate frequency relations of Eqs. (56)—(59) for

AC1 = 1 and = E under the assumption that A equals the exact amplitude, a0,

are compared in Fig. (3). It is seen that for E > 0 the Krylov-Bogoliubov approx-

imation, Eq. (58), rapidly departs from the exact solution for values of -Ve A

greater than about :;_/1.On the other hand, the improved approximation of Eq.

(59) gives a result which is very accurate (within 2.24 percent) of the exact

result for all E > 0. For negative values of E, the improved approximation also

gives a more accurate result than the Krylov-Bogoliubov method but apparently
breaks down as -0 E A approaches one and 0.)becomes less than 3x2. However,

much of this inaccuracy is due to the fact that the parameter A was taken

identically equal to the exact amplitude ao. If we use Eq. (59) to calculate ao as

a function of A, and then invert this relation to obtain A as a function of a,

we may plot the improved approximate frequency as a function of -0 e ao.

Using the approximate inverse relation of A a,
(1

1 	 a02
32 1 + ao2

we find that for oa02 = 1, the approximate frequency is 1/7 whereas the exact

frequency vanishes. Assuming a, = A, the approximate frequency at —ea02 =

— €A2 = 1 is and we thus see the increased accuracy of using the actual

amplitude of the oscillation rather than the approximation a, = A in the fre-

quency relation of Eq. (59).
We may also compare the approximate solutions for a against the exact result.

It is found that although the Krylov-Bogoliubov approxinlation breaks down

for CI —> 0, C3 > 0, the improved result is regular being a = A (cos 0 + o cos 30)
for CI = 0. In this case, m =32 in the exact solution, Eq. (57), and it is found

that the improved approximation for a is in error by at most 1.09 percent (at

o = ir/4 where a approx = 0.650 ao and a exact = 0.6434 ao).

As a final note, we would like to comment on the extension of the methods

described above to the analysis of nonlinear systems with more than one degree

of freedom. We have performed this analysis for the equations of a spinning

symmetric missile, and the results appear in a form quite similar to the one

dimensional results of this section except that now there are two systems

A = A2,8) Ai and 0'  = A2,8), where i = 1,2, in place of one.

These equations are nearly identical with the results of Murphy (1957 and 1962)
with the exception that the higher harmonics in the perturbation are obtained

directly by our method. We have also looked into the application of these

methods to the motions of asymmetric missiles. In principle the method is

fairly direct but the algebra becomes very complicated, and we, as yet, have

been unable to obtain results useful to the ballistician or aerodynamicist.
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DISCUSSION

.luthor(s):  E. V. Laitone and T. J. Coakley

Discossor:  E. T. I kiwi I kt. Northrod Space Lalmratories

Whenever the coefficients of the (linearized) equations of motion can be approximated

by linear functions of the independent variable, the integrals are expressible in terms of

Bessel fulictions. Imleed, some of the graphical representations of the numerically

obtained solutions do suggest the behavior of such functions. Comments as to the range

of validity of the above approximation wouhl lw of interest.

Author's reply to disrussion:

'llie question is simply that of asking under what conditions cant the variable

mwfficients in the equation of motion be replace(1 by their linear expanshms. By

referring to Eq. (3) of the paper, and assuming DI and CI constant, we find that

the variation in the coefficients of the equation of motion is simply due to the

variation in g(s). Thus, if  g (x) = go + go: is the linear expansion of g, then the

relative error between this and the exact value is A = I g — g2) 'AL and this provides

a means for determining the accuracy of the linear expansion in the approximate

equation of motion. If we assume an exponential variation in density with altitude,

i.e.. 1.4 =  goe-o!',  and are interested in the accuracy of the linear expansion in the

vicinity of a given reference altitinle. yo. then the relative error as written above

becomes

= 1 — [1 — Oly — yo)1 eso'-Y"

This error attains a value of 0.104 or 10.  . percent for  0(y — lln) =  0.4, and 0.061

or 6.1 percent for (y — !hi) = — 0.4.

Thus, in order to keep the relative error less than about 10 percent, the altitude

band over which the approximation is to apply should not exceed 2(y —

Ay = X 0.4 X "23,000 or roughly 20,000 ft.




